Skip to main content

Green Data Center Design and Build Strategies - 3

Green Data Center Design and Build Strategies

Chapter Description

This chapter discusses methods for limiting the environmental impact that occurs during the construction of a Data Center through decisions concerning physical location, choice of building materials, landscaping choices and jobsite construction practices.

From the Book

Grow a Greener Data Center
$41.59 (Save 20%)

Data Center Configuration

The physical configuration of your Data Center—where you place it in a building and how you arrange its physical infrastructure components—provides another opportunity to make the facility more efficient. Strategies to consider include the following:
  • Situating your hosting space at the center of a building rather than right against an external building wall provides some isolation from outside temperatures, for instance, so your cooling system won't have to work as hard on hot days.
  • Placing cooling infrastructure near heat-producing hardware, a practice known as close-coupled cooling. Compared to traditional Data Center designs, where large air handlers attempt to cool large sections of the hosting space, close-coupled cooling requires less fan energy to project cooling where it's needed and reduces unwanted opportunities for chilled air and server exhaust to mix. This approach and the inefficiency that comes with mixing Data Center airflows are covered in Chapter 5.
  • Streamlining your structured cabling design by adopting a distributed physical hierarchy. A distributed design uses significantly fewer cabling materials and improves the cooling airflow. This design and a detailed look at the reduced length of cable runs it offers are presented in Chapter 6, "Cabling Your Way to a Greener Data Center."

Building Exterior

The outside of your Data Center building will be subjected to a variety of weather and temperatures during its lifespan. So, in addition to the green characteristics you want for other building elements—durable and preferably made from renewable or recycled content—look for external building components that can mitigate those outdoor conditions.
For instance, you can lower the temperature of your building and reduce how hard your internal cooling system must work by using surfaces that have high solar reflectance and thermal emittance. That is, they efficiently reflect sunlight and shed absorbed heat.
Both solar reflectance and thermal emittance are typically expressed as either a percentage or as a value between 0 and 1. The higher the number, the less a material absorbs and retains heat. To qualify for an Energy Star label, for example, low-slope roofs must have an initial solar reflectance of at least 0.65 and after 3 years at least 0.50. Steep slope roofs must have an initial solar reflectance of at least 0.25 and after 3 years at least 0.15.
Roofs with high-radiative properties, often called cool roofs, make your building greener not only because they conserve energy, but also because they decrease heat islands. Heat islands, where urban areas have higher temperatures than nearby rural ones, can increase peak energy demand on an electrical grid, possibly leading to brownouts or blackouts, and contribute to the creation of smog.
Heat islands are caused by the reduced quantity of trees and foliage in developed areas, airflow restrictions created by tall buildings, and exhaust heat from motor vehicles and buildings. Many cities can see a temperature difference of as much as 10 degrees Fahrenheit (5.6 degrees Celsius) above adjoining rural areas, according to the U.S. Environmental Protection Agency.
A subset of cool roofs, also known as green roofs or living roofs, employs live vegetation atop conventional roofing. In addition to the temperature-reducing benefits of other cool roofs, green roofs reduce storm-water runoff, act as additional building insulation, and are credited with nearly doubling a roofing system's lifespan by shielding the surface from sun and rain. Green walls or living walls, which apply the same mechanism to a building's vertical surfaces, can also be employed, although are much less common.
Whether applied to a roof or wall, a living surface requires careful engineering. Simply allowing ivy to grow up the side of your building does not equate to a green wall. A proper installation involves a protective membrane to prevent either moisture or plant roots from penetrating to the building, a drainage system to keep foliage from being flooded by pooled water, a soil layer to anchor plants and absorb nutrients and, of course, the vegetation itself—typically plants that are fast growing, drought tolerant, and low maintenance. The entire system needs to be lightweight so as to not pose structural problems for the roof.
External building surfaces are also, obviously, prime locations to install photovoltaic cells—devices that convert solar energy into electricity. These can include solar panels mounted on rooftops or walls or even building integrated photovoltaics, in which components are embedded within the envelope of the building. Building integrated photovoltaic systems can take the form of roofing tiles, spandrel panels (opaque glass used between floors in commercial building facades), awnings, skylights, sunshades, walls, and more.
Photovoltaics today typically generate 5 watts to 15 watts per square foot (50 watts to 150 watts per square meter) when in full sunlight. You, therefore, need from 65 square feet to 200 square feet (6 square meters to 18.6 square meters) of photovoltaics to produce one kilowatt of power.
Exactly how much energy can be harvested by a solar array varies by product, because some are more efficient than others, and by environmental conditions, including the following:
  • Latitude: Various parts of the world receive more or less sun exposure than others, which affects how much solar energy can be collected.
  • Climate: Overcast or stormy weather reduces the amount of sun that a photovoltaic system is exposed to. Nearby snowy surfaces can actually boost performance by reflecting more light onto a solar array, but only if the array itself isn't covered with snow.
  • Orientation: Photovoltaic components should be installed to receive maximum exposure to the sun. Avoid obstructions to the system such as trees or other structures especially during peak collection hours, when the sun appears highest in the sky.
  • External air quality: The more contaminants in the air, the less solar energy that reaches a solar array.
If you install a photovoltaic system and employ a cool roof on your building, clean their surfaces frequently. Any dirt or debris that covers them reduces their efficiency, reducing how much energy you collect.


Popular posts from this blog

Timer AC bergantian

Bagaimana sich prinsip kerja AC yang bergantian? Seperti yang terangkai pada ACPDB, yang kita butuhkan adalah 1 buah timer dan 2 buah kontaktor. Pada dasarnya rangkaiannya adalah seperti gambar diatas. Seperti kita ketahui, timer dan kontaktor akan bekerja apabila mendapatkan catuan 220 V. Pada timer catuan bisa dikoneksikan di lubang “L” dan “N”, sedang pada kontaktor dilubang “A1” dan “A2”. Itulah kenapa pada saat mati listrik komponen2 tersebut tidak bekerja. Timer berfungsi sebagai switch dari 2-1 atau 2-3 dan lubang “2” sebagai sumber yang dialiri arus listrik. Sesuai namanya alat ini akan bergantian dari 2-1 atau 2-3 berdasarkan waktu yang sudah kita atur pada sirip biru. Satu sirip merepresentasikan 30 menit. Sedang pada kontaktor untuk tipe Telemecanique, sumbu-sumbu saklarnya adalah 1-2, 3-4, 5-6, NO-NO, NC-NC.  Jika “A1” dan “A2” tidak dicatu maka 1-2 (open), 3-4 (open), 5-6 (open), NO-NO (open), NC-NC (close/terhubung). Dan bila “A1” dan “A2” dicatu  maka 1-2 (close), 3-4 (clo…

Contoh Panduan Standarisasi Area Data Center

Berikut adalah contoh Panduan Standarisasi Area Data Center

PANDUAN - IK Standarisasi Area Data Center Article Number: 49 | Rating: Unrated | Last Updated: Mon, Nov 25, 2013 at 2:13 PM BAB I KEBIJAKAN
1.1.Area Data Center
Areadata center termasuk aset vital perusahaan dan diperlakukan sesuai dengan persyaratan yang telah ditetapkan dalam Sistem Manajemen Pengamanan Perusahaan.

Seksi Jaringan bertanggungjawab terhadap pengamanan fisik dan logik. sedangkan fungsi Sekuriti terhadap pengamanan fisik.

1.2.Pertimbangan Dalam Hal Penentuan Lokasi Area Data Center
Beberapa pertimbangan yang harus ada dalam menentukan lokasi ruang data center, yaitu :

1.Memungkinkan untuk pengembangan yang memadai, misalnya mempertimbangkan pengembangan untuk jangka waktu 5 (lima) tahun ke depan.
2.Mempertimbangkan ruang yang tidak "terlalu” banyak dilalui untuk operasional lain, namun tetap dapat dijangkau dengan mudah.
3.Memperhatikan aspek keamanan dan keselamatan pekerja.
4.Memenuhi persyaratan sebagaimana yang …

Mendesigns dan Menghitung UPS untuk Data Center

Mendesigns dan Menghitung UPS untuk Data Center UPS dan data center mungkin bisa di sebut sayur tanpa garam, hambar jika tidak saling melengkapi. 
Tapi untuk menentukan kebutuhan akan UPS data centerperlu perhitungan yang matang agar UPS dan server tetap awet dan selalu ON 24 jam. banyak sekali jenis UPS dan daya yang di tawarkan. Kita harus menghitung kebutuhan beban keseluruhan server agar ketika listrik down UPS dapat menghandle beberapa detik untuk listrik pindah ke genset begitu pula sebaliknya, Oke untuk menentukan itu semua tentukan dulu jenis UPS yang akan anda gunakan.
Oke kita sedikit belajar dulu tentang UPS :)
PRINSIP KERJA UPS Setiap PC membutuhkan daya listrik. Apabila aliran listrik (main power) terputus, PC akan mati (tidak berfungsi). Fungsi dasar UPS (Uninterruptible Power Supply) adalah menyediakan suplai listrik SEMENTARA ke beban (PC) tanpa terputus pada saat main power tidak bekerja agar seluruh proses dapat dihentikan dengan benar, seluruh data dapat disimpan den…